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Abstract
We study the kinetics of the search of a single fixed target by a searcher/walker
that performs an intermittent random walk, characterized by different states
of motion. In addition, we assume that the walker has the ability to detect
the scent left by the prey/target in its surroundings. Our results, in agreement
with intuition, indicate that the prey’s survival probability could be strongly
reduced (increased) if the predator is attracted (or repelled) by the trace left
by the prey. We have also found that, for a positive trace (the predator is
guided towards the prey), increasing the inhomogeneity’s size reduces the
prey’s survival probability, while the optimal value of α (the parameter that
regulates intermittency) ceases to exist. The agreement between theory and
numerical simulations is excellent.

PACS numbers: 05.40.−a, 05.40.Ca, 87.23.−n

1. Introduction

The study of different approaches to obtain optimal strategies for the search of specific targets
has recently experienced a rapid growth and motivated a great deal of work [1]. On one hand,
the determination of an efficient search strategy emerged as a crucial problem in behavioral
ecology, inspiring a wealth of experimental and theoretical work [2–4]. On the other hand, it
is also relevant to broader domains such as stochastic processes theory, applied mathematics
as well as of great interest for molecular biology, social sciences and ecology [1, 5–11].

Among the different forms of optimal search strategies, an intermittent one has been
recently proposed [1, 5, 8]. Intermittent motion occurs in a wide array of organisms from
protozoans to mammals. It has been observed that numerous animal species switch between
two distinct type of behavior (and motion) while foraging. In fact, many foragers such as
plankitovorous fish, ground foraging birds and lizards, adopt an intermittent searching behavior
[2–4]. These intermittent search strategies combine phases of relocation (in which the searcher
may or may not capture the target), and a thorough search phase, which allow for the target
detection.
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In [6] a theoretical model for the search kinetics of a hidden target, assuming that each
searcher can be in either of two propagation states, was presented. In one of them, the
displacement of the searcher is a random walk with symmetric jumps to nearest neighbors
sites while in the other state, the searcher also performs a symmetrical random walk, but
jumping to next-nearest neighbors. It was shown that intermittent strategies always improve
target detection in comparison with the single-state displacement. Recently [12], and in order
to include a dynamic bias, the previous results were generalized, finding situations where
more than one minimum or maximum could arise in the survival probability or other relevant
quantities.

In its simplest form, one assumes that the search is performed at random (i.e. without
taking into account the possible signals from the prey), but in general predators often search
for prey using chemical cues, particularly where visual or mechanical stimuli are obscured
or unavailable. For instance, in [13] the sighting range of predators was also considered
as a sort of additional searching ability. This fact may be interpreted as a deterministic
motion of predators after the prey gets into their sighting range giving rise a finite step-
wise problem between the prey and the predators. The perception of chemical clues acts
to bias the locomotion, and feedback of odorant stimulus distributions appears directly to
regulate subsequent movement to the route toward the prey [14]. Despite its importance, how
olfactory-guided search strategies operate over a distance has not been rigorously studied yet
[15]. However, this is an interdisciplinary field of research that is in an early growing stage,
particularly in relation to the presence for ‘odor plumes’ [16, 17].

In this work, we make a step forward toward the consideration of prey signals introducing
inhomogeneities in the field that may be associated with the trace left by the prey on its
surroundings. In order to perform our study, we exploit the theory of multi-state random
walk (RW) [18] as well as the local inhomogeneity technique developed in [20–22]. We use
the concepts of the survival probability for the target and establish the connection to the first
passage time of the searcher.

The outline of this paper is as follows. The following section presents the basic definitions,
equations and functions to be used later. In section 3, we describe our model, focusing on
the one-dimensional analytical solvable case and made the connection with Monte Carlo
simulations. In section 4, we present some results for the survival probability and related
functions, while in the last section we draw some conclusions.

2. Theory

2.1. The composite process

We assume that at time t each walker can be at site �s on a lattice, in one of the two internal states.
We associate the internal state 2 with a thorough search phase motion (compact exploration
state), whereas internal state 1 models the relocation phase. There is a transition rate between
the two internal states which will be explained later. We follow the walker evolution through
the system considering the conditional probability Pi,i0(�s, t |�s0, t = 0) of being at site �s in the
internal state i at time t given that it was at site �s0 in the internal state i0 at t = 0.

The coupled master equations for the two internal state composite processes are

∂P1,i0(�s, t |�s0, 0)

∂t
= A1P1,i0(�s, t |�s0, 0) + γ2P2,i0(�s, t |�s0, 0) − γ1P1,i0(�s, t |�s0, 0) (1)

∂P2,i0(�s, t |�s0, 0)

∂t
= A2P2,i0(�s, t |�s0, 0) + γ1P1,i0(�s, t |�s0, 0) − γ2P2,i0(�s, t |�s0, 0), (2)
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where the γi are the transition rates between internal states and the Ai are the operators that
describe the evolution/propagation of the walker within each state. It should be noted here
that

• while the walker is switching its internal state no spatial displacement occurs;
• the conditional probabilities Pi,i0(�s, t |�s0, t = 0) do not satisfy the normalization condition,

i.e.,
∑

�s Pi,i0(�s, t |�s0, t = 0) �= 1. This is due to the fact that each Pi,i0(�s, t |�s0, t = 0) has a
‘leakage’ (controlled by the transition rate γi) to the other inner state;

• however, the marginal probability, that is the sum P̂Mar,i0(�s, u|�s0, 0) = P̂1,i0(�s, u|�s0, 0) +
P̂2,i0(�s, u|�s0, 0), is well defined and normalized, i.e. P̂Mar,i0(�s, u|�s0, 0) = 1;

• for the sake of simplicity, we have considered only two internal states (however, the theory
may be extended to consider an arbitrary number of internal states).

In what follows, we will denote the Laplace transform on t by a caret over the
corresponding function; for example,

P̂i,i0(�s, u|�s0, 0) =
∫ ∞

0
e−utPi,i0(�s, t |�s0, 0) dt.

2.2. The trapping process

We will focus on the survival probability for the target/prey. A typical walk ends when the
walker reaches the target for the first time, i.e. the trapping is assumed to be ‘perfect’. A
closely related quantity (for the case of perfect trapping) is the walker’s first-passage time
density (FPTD).

We define F I
1,i0

(�0, t |�s0, 0)
(
F I

2,i0
(�0, t |�s0, 0)

)
to be the FPTD through the site �0 at time t

given that it was at �s0 with the internal state i0 at time t = 0 given that adsorption/capture is
possible while the walker is only on the internal state 1 (2). Following [23] we introduce the
notion of the generalized state which takes into account the position and the internal state of
the walker, (�s, i).

The connection between the probability density of first arrival at (�0, 1) at time t from
(�s0, i0), F I

1,i0
(�0, t |�s0, 0), and the conditional probability Pi,i0(�s, t |�s0, t = 0) is established as

F̂ I
1,i0

(�0, u|�s0, 0) = P̂1,i0(
�0, u|�s0, 0)

P̂1,1(�0, u|�0, 0)
. (3)

A similar expression is obtained when the ‘defective state’ (‘trapping state’) is (�0, 2):

F̂ I
2,i0

(�0, u|�s0, 0) = P̂2,i0(
�0, u|�s0, 0)

P̂2,2(�0, u|�0, 0)
. (4)

In this way we reobtain the Siegert formula [24], generalized to internal states [25].
When capture/adsorption occurs in any of the two internal states of the walker we define

F II
1,i0

(�0, t |�s0, 0)
(
F II

2,i0
(�0, t |�s0, 0)

)
as the FPTD through the site �0 at time t given that it was at �s0

with the internal state i0 at time t = 0 when adsorption/capture occurs on the internal state 1
(2). An interesting relationship between FI and FII can be established by noting that

F II
1,i0

(�0, t |�s0, 0) = F I
1,i0

(�0, t |�s0, 0) −
∫ t

0
F I

1,2(
�0, t |�0, τ )F II

2,i0
(�0, τ |�s0, 0) dτ (5)

F II
2,i0

(�0, t |�s0, 0) = F I
2,i0

(�0, t |�s0, 0) −
∫ t

0
F I

2,1(
�0, t |�0, τ )F II

1,i0
(�0, τ |�s0, 0) dτ. (6)

3
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The above equations have a simple statistical interpretation: the left-hand sides in both
equations represent the FPTD when the absorption takes place in any of the two internal states,
while on the right-hand side the first term takes into account absorption only when one internal
state captures and the second one discounts the contributions of the paths that go through the
absorption ‘state’ (�0, 1) in equation (5) or (�0, 2) in equation (6).

These pairs of equations may be expressed in Laplace space as

F̂ II
1,i0

(�0, u|�s0, 0) + F̂ II
2,i0

(�0, u|�s0, 0)F̂ I
1,2(

�0, u|�0, 0) = F̂ I
1,i0

(�0, u|�s0, 0) (7)

F̂ II
2,i0

(�0, u|�s0, 0) + F̂ II
1,i0

(�0, u|�s0, 0)F̂ I
2,1(

�0, u|�0, 0) = F̂ I
2,i0

(�0, u|�s0, 0). (8)

A similar expression (although in a different context) was established in [26].
When trapping occurs in any of the two states the survival probability (that is, the

probability that the prey is not found before a fixed time) is (if �s0 �= �0):

�II
i0

(�0, t |�s0, 0) = 1 −
∫ t

0

[
F II

1,i0
(�0, τ |�s0, 0) + F II

2,i0
(�0, τ |�s0, 0)

]
dτ. (9)

Adding equations (7) and (8) and using the results of equations (3) and (4), we find

F̂ II
1,i0

(�0, u|�s0, 0)P̂Mar,1(�0, u|�0, 0) + F̂ II
2,i0

(�0, u|�s0, 0)P̂Mar,2(�0, u|�0, 0) = P̂Mar,i0(
�0, u|�s0, 0),

(10)

where PMar,i0(�s, t |�s0, 0) is the marginal probability distribution, i.e.

PMar,i0(�s, t |�s0, 0) = P1,i0(�s, t |�s0, 0) + P2,i0(�s, t |�s0, 0). (11)

2.3. Long time and high transition rate limit

Following [27] and using equations (1) and (2) it can be shown that in the high transition long
time limit the distribution over the internal states becomes stationary and the common spatial
distribution is governed by the averaged transport equation

∂PMar(�s, t |�s0, 0)

∂t
= ÃPMar(�s, t |�s0, 0), (12)

where

Ã = αA1 + (1 − α)A2 (13)

with

α = γ2

γ1 + γ2
(14)

and PMar(�s, t |�s0, 0) is the marginal probability distribution in the stationary case, i.e.

PMar(�s, t |�s0, 0) = P1,i0(�s, t |�s0, 0) + P2,i0(�s, t |�s0, 0). (15)

From these equations, it is easy to see that α = 0 implies that the walker cannot jump to state
1, while for α = 1, it cannot jump to state 2.

It is important to note that in the considered limit, the initial condition on the internal state
disappears, i.e., the evaluation of any statistical property becomes independent of the initial
internal state of the walker. Taking into account this fact and equation (10),

F̂ II
1,i0

(�0, u|�s0, 0) + F̂ II
2,i0

(�0, u|�s0, 0) = P̂Mar(�0, u|�s0, 0)

P̂Mar(�0, u|�0, 0)
. (16)
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Figure 1. Schematic transitions between sites and between internal states of the chain: state 1
corresponds to the relocation phase, while state 2 corresponds to the compact searching phase.

Then the survival probability (equation (9)) adopts the form

�̂II (�0, u|�s0, 0) = 1

u

(
1 − [

F̂ II
1,i0

(�0, u|�s0, 0) + F̂ II
2,i0

(�0, u|�s0, 0)
])

= 1

u

(
1 − P̂Mar(�0, u|�s0, 0)

P̂Mar(�0, u|�0, 0)

)
. (17)

3. The model: ‘smelling the prey’

As in [6] we restrict ourselves to work on an infinite discrete chain and assume that the fixed
target/prey is located at the origin of the lattice. At t = 0, a searcher/predator originally at s0 on
the chain, starts the ‘search’, and when it finds the target/prey, catches it with probability one,
i.e. perfect trapping. We will assume that the searcher ‘captures’ the prey only upon landing
directly on the target site at the end of the re-localization state (next-nearest neighbors walk-
internal state 1), or via a one-step walk (compact exploration state-internal state 2) on to that
site. Moreover, near the origin (where the prey is located), the prey/target has left a trace/odor
which either increases the detection by a predator or confuses the searcher depending on the
trace being below or above than a critical (indifferent) value p. While it is possible that the
prey is detected in any of the two states or phases of the searcher, the trace left by the prey
is only perceptible to the searcher in the compact exploration state. This scheme emphasizes
the fact that re-localization phase is at the expense of a coarse-grained sampling, i.e. the
predator’s sensory skills are diminished. Conversely, searchers in the compact exploration
phase might benefit by detecting the odor more successfully in the spatial domain and could
allow subsequent movement toward its source (prey) [28].

Within each internal state, the displacement of the predator on the lattice is described (in
the case of N = 2 symmetric inhomogeneities) by the following Ai operators (see figure 1,
while figure 2 shows the case of the high transition and long time limit scheme):

[A2]s,s ′ = λ

2
[δs,s ′−1 + δs,s ′+1 − 2δs,s ′ ] ∀ s ′ �=,−1, 1, (18)

and

[A2]1,0 = [A1]−1,0 = [A1]1,2 = [A2]−1,−2 = λ

2
(19)

[A2]1,1 = [A2]−1,−1 = [A2]0,0 = −λ (20)

[A2]2,1 = [A2]−2,−1 = (1 − p) λ (21)

5



J. Phys. A: Math. Theor. 43 (2010) 195001 J A Revelli et al

S=0

2

2

2 2 2

2 222

2 2

2 2 2

22p

(1 )p

p

(1 )p

Figure 2. Schematic transitions for the marginal probability distribution in the high transition
limit.

[A2]0,1 = [A2]0,−1 = pλ. (22)

For the internal state 1 we have

[A1]s,s ′ = λ

2
[δs,s ′−2 + δs,s ′+2 − 2δs,s ′ ] ∀ s, s ′. (23)

The γj parameters are scaled in terms of the transition rate between chain sites λ, and
the olfactory capability is ‘tuned’ with the parameter p. The above schemes can be
straightforwardly generalized to include the case N � 2 (symmetric or asymmetric)
inhomogeneities.

In the problem of intermittent search strategies, optimization consists of finding the
values of γj , the transition rates between internal states (equations (1) and (2)), or the α values
(equation (12)) such that the prey’s survival probability at a time t be minimal. In order to
perform our study, we exploit the theory of multi-state random walk (RW) [18] in the high
transition and long time regime as well as the local inhomogeneity technique developed by
Montroll [20–22].

For completeness, we indicate here the Laplace result for the survival probability
(equation (17)) that early shows the complexity of these expressions:

�̂II (�0, u|�s0, 0) = 1

u

(
1 − P̂Mar(0, u|s0, 0)

P̂Mar(0, u|0, 0)

)
(24)

=
(

1 − P̂Mar(s0, u)	1 + [P̂Mar(s0 + 1, u) + P̂Mar(s0 − 1, u)]	2

P̂Mar(0, u)	1 + 2P̂Mar(1, u)	2

)
(25)

	1 = P̂Mar(0, u) + P̂Mar(2, u) − 1

u + 1
[αP̂Mar(2, u) + (1 − α)P̂Mar(1, u)] − 1

u + 1
×{α[P̂Mar(0, u) + P̂Mar(4, u)] + (1 − α)[pP̂Mar(1, u) + (1 − p)P̂Mar(3, u)]}

	2 = 1

u + 1

{
α

2
[P̂Mar(1, u) + P̂Mar(3, u)]

+ (1 − α)[pP̂Mar(0, u) + (1 − p)P̂Mar(2, u)]

}
− P̂Mar(1, u), (26)

where P̂Mar(s, u|0, 0) ≡ P̂Mar(s, u) is obtained from

P̂Mar(s, u) = 1

2π

∫ π

−π

cos sk

1 + u − [(1 − α) cos k + α cos 2k]
dk. (27)

As its analytical inversion is beyond our scope, we have chosen to make the Laplace
numerical inversion, exploiting an algorithm that has proven to be adequate in other works
[6, 19].
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4. Numerical and Monte Carlo results

Here we illustrate and give some general ideas to interpret the results. We have numerically
solved our model by making the inverse Laplace transformation of the expressions indicated
above. In order to check the numerical results, we have also performed Monte Carlo
simulations. An ensemble of independent walkers started their searches in a given lattice
position (s0 = 5). The predators chose the way to search the prey randomly, changing
between states 1 and 2 according to the ratio α (which has already been defined in
equation (14)). The prey was immobile at s = 0. We have averaged over 105 realizations. All
times are given in units of the diffusion constant λ.

It is worth commenting that the high transition rate limit requires that the mean sojourn
time in any of the two internal states (γ −1

1 and γ −1
2 ) be short on the timescale determined by the

propagators A1 and A2 (λ−1) [27]. So we have, γ −1
i � λ−1 with i = 1, 2, or λ

γi
� 1. As time

is given in unit of the diffusion constant λ, we have, e.g., if t = 10 	⇒ t = 10
(

1
λ

)
, but this

time is much larger than 1
γi

(mean sojourn time in internal state i) as suggested above.

In figure 3, we draw the survival probability curves �II (α; t) as a function of α. On the
upper panel and for different times (t = 10, 20, 50, 100), we analyze the case of a ‘detection
(olfactory) skill’ of p = 0.9, that is an excellent olfactory skill, or a strongly attractive
situation. On the lower panel, we have considered the case of a fixed time (t = 20) and
analyzed different ‘olfactory skills’: p = 0.1, 0.4, corresponding to cases when the prey left a
trace which sidetracks the searcher, or a negative trace that repels the searcher from the vicinity
of the target, i.e. the ‘skunk’ case; and for p = 0.9, that corresponds to the case where a positive
trace exists, guiding the searcher toward the prey (the prey’s odor increases the probability of
detection by the predator). The results show a clear trend that is in agreement with everyone’s
expectation for these situations. That is, when the searcher has developed good olfactory skills
(p > 0.5) increases its ‘chances’ of catching the prey, while if its olfactory ability is degraded
(p < 0.5) the prey survival probability rises.

It is apparent how the intermittent search can improve the detection probability, i.e.,
minimize the survival probability of the target, compared with the single-state search (γ1 = 0,
i.e., α = 0 and γ2 = 0, i.e., α = 1), even for reduced olfactory capabilities (p < 0.5). This
confirms the robustness of the intermittent search approach [29]. As can be seen from both
figures, we always found a minimum in �II (α; t) (for a fixed t) as a function of α. We want
to stress that the value of α minimizing �II (α; t) defines the optimal relation between γ1 and
γ2 for improving the search strategy. From the figures, it is apparent that there is excellent
agreement between the numerical solutions of our equations and Monte Carlo simulations.

Figure 4 shows the dependence of curve �II (α; t) versus α, on the inhomogeneity’s
size dependence. The upper panel corresponds to p = 0.1, again the ‘skunk’ case, and for
different inhomogeneity sizes: inhomogeneity in the intervals [−1,1], [−2,2], [−4,4] and
[−9,9], while on the lower panel we have the case p = 0.9, that is the good olfactory skills
case, for the same inhomogeneity sizes as before; in both cases for a tmax = 10. For a fixed
number of inhomogeneities, the advantage of switching back and forth to the relocation phase
is larger in the repelling than in the attracting case; an explanation of this interesting behavior
is given in the analysis of figure 5. It is worth remarking here that the minimum in the survival
probability disappears for large inhomogeneities and the importance of the initial condition
for this problem.

In figure 5, we depict the optimal value of α as a function of the olfactory skill p for
different inhomogeneity sizes and for an evolution time t = 20. All predators started their
searches from the same initial site (s0 = 5). Even though all curves present a monotonous
behavior, it is apparent that the inhomogeneity size plays an important role. For low p (that

7
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Figure 3. Survival probability curves �II (α; t) versus α. On the upper panel for different times
(◦ for t = 10; � for t = 20, � for t = 50, and � for t = 100) and for a ‘detection (olfactory)
skills’ p = 0.9. On the lower panel, we have the case of a fixed time (t = 20), and different
‘detection (olfactory) skills’: ◦ for p = 0.1; � for p = 0.4, and � for p = 0.9. In both panels
lines represent the numerical Laplace anti-transform curves and points represent the corresponding
Monte Carlo simulations.
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Figure 4. Inhomogeneity size dependence of the survival probability versus α. On top, the case
of p = 0.1 for: ◦ for the interval [−1, 1], � for [−2, 2]; crosses for [−4, 4], and � for [−9, 9].
Bellow, the case p = 0.9 for the same sizes as before. All curves only correspond to Monte Carlo
simulations.

is in the skunk region) as the inhomogeneity grows, the optimal α tends to be higher. It is
an expected result because in order to capture the prey, predators have to avoid the repulsive
skunk effect which is achieved moving essentially in the state 1. For high p, it is observed
that when the inhomogeneity is small there still exists an optimal value of α, while for large
inhomogeneity such an optimal value of α disappears.
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Figure 5. Inhomogeneity size dependence of optimal α versus the olfactory skill p, ◦ for the
interval [−1, 1], � for [−2, 2]; crosses for [−4, 4], and � for [−9, 9]. All curves only correspond
to Monte Carlo simulations.

5. Conclusions

We have presented a model for the searching dynamics of a hidden target performed by a
searcher which carries out an intermittent motion, with a short range thorough search and a
relocation phase. This model takes into account the traces/signals left by the prey. This was
done by introducing field inhomogeneities that may be associated with the signals (trace) left
by the prey in its surroundings. The intermittency has been characterized by the probability
density functions for jumps between the different states of motion. For simplicity, we have
restricted our analysis of intermittency to first-order transitions with parameters γ1 and γ2.
In order to perform our study, we exploited the theory of multi-state random walk (RW) in
the high transition rate regime as well as the local inhomogeneity technique and made the
connection between the target’s survival probability and the first passage time density of the
searcher. We believe that the present scheme is both simple enough to be studied analytically
and rich enough to be able to mimic the influence of the ‘smell’ in the capture process.

In complete agreement with intuition, the results clearly indicate that the prey’s survival
probability could be strongly reduced (increased) if the predator is attracted (or repelled) by
the positive (negative) trace left by it. We have also found that, for a positive trace, increasing
the inhomogeneity’s size reduces the prey’s survival probability, while the optimal value of α

ceases to exist. The agreement between theory and numerical simulations is excellent. It is
important to remark that this model is a first attempt to describe the smelling phenomenon.
We will consider more sophisticated smelling models in future works.

The present model not only takes into account the predator’s ability to move in the foraging
space, but also the possible attractive or repulsive (trying to avoid trapping) traces left by the
prey. In this way, we have made a step forward in the complexity of a searching process by
including in its description, both theoretically and through simulations, different situations,
for instance the ability of predators in searching the prey and the fact of the distortion left by
the prey in its surroundings.
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It is worth remarking here that we have considered a ‘short-range’ inhomogeneity because
of the simplicity of analytically solving the problem. The present model of intermittent
search can be straightforwardly generalized to higher dimensions, finite size domain systems,
continuous systems, imperfect detection, dynamical behavior of the target, non-Markovian
transitions between internal states, etc. It is worth indicating here a recent paper [16] that
describes an alternative form of finding odor plumes in turbulent environments. The possibility
of including such a strategy within our scheme, as well as the analysis of all the above indicated
aspects, will be the subject of further work.
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